

Journal of Alloys and Compounds 281 (1998) L1-L2

Journal of ALLOYS AND COMPOUNDS

Letter

Crystallographic data of new ternary Sm_5Ge_4 -type $Gd_2Sc_3Ge_4$ and $R_2Sc_3Si_4$ compounds (R=Sm, Gd-Tm)

A.V. Morozkin*, Yu.D. Seropegin, V.K. Portnoy, A.V. Leonov, I.A. Sviridov

Department of Chemistry, Moscow Lomonosov State University, Leninskie Gory, Moscow, GSP-3, 119899, Russia

Received 6 May 1998; received in revised form 6 July 1998

Abstract

Investigations made by powder X-ray diffraction on eight new ternary $Gd_2Sc_3Ge_4$ and $R_2Sc_3Si_4$ compounds (R=Gd-Tm) are reported. The following compounds were observed to crystallize in the orthorhombic Sm_5Ge_4 -type structure (space group *Pnma*): $Gd_2Sc_3Ge_4$ (*a*=0.7211(2) nm, *b*=1.4050(6) nm, *c*=0.7453(3) nm), $Sm_2Sc_3Si_4$ (*a*=0.7094(1) nm, *b*=1.3992(4) nm, *c*=0.7402(2) nm), $Gd_2Sc_3Si_4$ (*a*=0.7092(2) nm, *b*=1.4012(4) nm, *c*=0.7412(2) nm), $Tb_2Sc_3Si_4$ (*a*=0.7078(1) nm, *b*=1.3982(3) nm, *c*=0.7395(2) nm), $Dy_2Sc_3Si_4$ (*a*=0.7060(1) nm, *b*=1.3951(4) nm, *c*=0.7380(2) nm), $Ho_2Sc_3Si_4$ (*a*=0.7042(1) nm, *b*=1.3921(4) nm, *c*=0.7362(2) nm), $Er_2Sc_3Si_4$ (*a*=0.7028(1) nm, *b*=1.3894(4) nm, *c*=0.7343(2) nm) and $Tm_2Sc_3Si_4$ (*a*=0.7011(2) nm, *b*=1.3852(5) nm, *c*=0.7324(2) nm). © 1998 Elsevier Science S.A. All rights reserved.

Keywords: Ternary rare earths compounds; Silicides; Germanides; Structure type

This paper reports on the structural data of eight new compounds using powder X-ray diffraction analysis.

In the present investigation the compounds were made in an electric arc furnace under an argon atmosphere using a non-consumable tungsten electrode and a water-cooled copper tray. Silicon (purity, 99.99%), germanium (purity, 99.99%), scandium (purity, 99.99%), samarium (purity 99.99%), gadolinium (purity, 99.99%), terbium (purity, 99.99%), dysprosium (purity, 99.99%), holmium (purity, 99.98%), erbium (purity, 99.98%) and thulium (purity 99.99%) were used as the starting components. Titanium was used as a getter during the melting process. The compounds were annealed at 1070 K for 200 h in argon atmosphere with titanium chips and quenched in ice-cold water.

X-ray powder diffraction analyses were obtained on an DRON-3.0 (Cu K α -radiation, $2\theta = 20...70^{\circ}$). The obtained diffractograms were identified via calculated X-ray patterns which were obtained in the isotropic approximation using the Rietan-programs [1].

Eight new compounds have been detected: $Gd_2Sc_3Ge_4$, $Sm_2Sc_3Si_4$, $Gd_2Sc_3Si_4$, $Tb_2Sc_3Si_4$, $Dy_2Sc_3Si_4$, $Ho_2Sc_3Si_4$, $Er_2Sc_3Si_4$ and $Tm_2Sc_3Si_4$. Analysis of the powder X-ray diffractograms shows that these compounds crystallize in the orthorhombic Sm_5Ge_4 -type structure (*Pnma*) [2] (Table 1). The lattice parameters of the compounds, refined at room temperature, and the reliability factor R_F resulting from the refinements are given in Table 2. The Sc atoms occupy the atomic positions of Sm2 and Sm3 in the Sm₅Ge₄-type structure.

The dependencies of the lattice parameters of the $\{Sm,Gd-Tm\}_2Sc_3Si_4$ compounds of the Sm_5Ge_4 type on the crystallographic radii *R* of the low temperature modification of the corresponding rare-earth metals [3] are presented in Fig. 1.

Table 1	
Atomic position parameters of Ce2Sc3Si4 (Sm5Ge4 structure type; space	e
group Pnma) [2,4]	

Atom	Type position	<i>x</i> / <i>a</i>	y/b	z/c			
Ce	8(d)	0.1040	0.0971	0.8879			
Sc1	4(c)	0.3392	1/4	0.9984			
Sc2	8(d)	0.1716	0.1240	0.3248			
Si1	4(c)	0.2123	1/4	0.6191			
Si2	4(c)	0.9673	1/4	0.1241			
Si3	8(d)	0.1533	0.9611	0.5367			

^{*}Corresponding author. Fax: +7-95-9390171; e-mail: head@general.chem.msu.su

Lattice parameters a, b, c (nm) and unit cell volume V (nm ³) of the $Gd_2Sc_3Ge_4$ and $R_2Sc_3Si_4$ (R=Sm, Gd–Tm) compounds"							
Compound	Structure	а	b	С	V		
Sm ₂ Sc ₃ Si ₄	Sm_5Ge_4	0.7094(1)	1.3992(4)	0.7402(2)	0.73472		
$Gd_2Sc_3Si_4$	Sm_5Ge_4	0.7092(2)	1.4012(4)	0.7412(2)	0.73683		
Tb ₂ Sc ₃ Si ₄	Sm_5Ge_4	0.7078(1)	1.3982(3)	0.7395(2)	0.73183		
Dy ₂ Sc ₃ Si ₄	Sm_5Ge_4	0.7060(1)	1.3951(4)	0.7380(2)	0.72690		
Ho ₂ Sc ₃ Si ₄	Sm_5Ge_4	0.7042(1)	1.3921(4)	0.7362(2)	0.72173		
Er ₂ Sc ₃ Si ₄	Sm_5Ge_4	0.7028(1)	1.3894(4)	0.7343(2)	0.71700		
Tm ₂ Sc ₃ Si ₄	Sm_5Ge_4	0.7011(2)	1.3852(5)	0.7324(2)	0.71121		

1.4050(6)

0.7211(2)

^a The $R_{\rm F}$ factor is given in %.

Sm₅Ge₄

Fig. 1. Dependence of the cell parameters of the {Sm, Gd-Tm}₂Sc₃Si₄ compounds on the R crystallographic radius.

The lattice parameters a, b, c and the cell volume V are proportional to the crystallographic radius of the rare earth metals for all rare earths excepting Sm.

0.75504

 $R_{\rm F}$ 8.1 6.7 7.9 8.6 9.5 8.5

8.6

8.4

References

[1] Fujio Izumi, The RIGAKU J., N 1 (6) (1989) 10-19.

0.7453(3)

- [2] E.I. Gladyshevsky, O.I Bodak, Kristallohimia intermetallicheskih soedinenii redkozemel'nyh metallov, L'viv, LSU, 1982, p. 137 (in Russian).
- [3] J. Emsley, The elements, 2nd ed., Clarendon press Oxford, 1991.
- [4] Pearson's Handbook of Crystallographic Data for Intermetallic Phases, American Society for Metals, Metals Park, OH 44073, vol. 2, 1985, p. 1721.

Table 2

Gd₂Sc₃Ge₄